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2 with_parameters_test_that

with_parameters_test_that

Execute a test with parameters.

Description

This function is an extension of [testthat::test_that()] that lets you pass a series of testing parameters.
These values are substituted into your regular testing code block, making it reusable and reducing
duplication.

Usage

with_parameters_test_that(
desc_stub,
code,
...,
.cases = NULL,
.test_name = NULL

)

cases(...)

Arguments

desc_stub A string scalar. Used in creating the names of the parameterized tests.

code Test code containing expectations.

... Named arguments of test parameters. All vectors should have the same length.

.cases A data frame where each row contains test parameters.

.test_name An alternative way for providing test names. If provided, the name will be
appended to the stub description in ‘desc_stub‘. If not provided, test names will
be automatically generated.

Details

You have a couple of options for passing parameters to you test. You can use named vectors/
lists. The function will assert that you have correct lengths before proceeding to test execution.
Alternatively you can used a ‘data.frame‘ or list in combination with the splice unquote operator
!!!. Last, you can use the constructor ‘cases()‘, which is similar to building a ‘data.frame‘ rowwise.
If you manually build the data frame, pass it in the ‘.cases‘ argument.

## Naming test cases

If the user passes a character vector as ‘.test_name‘, each instance is combined with ‘desc_stub‘
to create the completed test name. Similarly, the named argument from ‘cases()‘ is combined with
‘desc_stub‘ to create the parameterized test names. When names aren’t provided, they will be
automatically generated using the test data.

Names follow the pattern of "name=value, name=value" for all elements in a test case.
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Examples

with_parameters_test_that("trigonometric functions match identities:",
{
testthat::expect_equal(expr, numeric_value)

},
expr = c(sin(pi / 4), cos(pi / 4), tan(pi / 4)),
numeric_value = c(1 / sqrt(2), 1 / sqrt(2), 1),
.test_name = c("sin", "cos", "tan")

)

# Run the same test with the cases() constructor
with_parameters_test_that(

"trigonometric functions match identities",
{

testthat::expect_equal(expr, numeric_value)
},
cases(

sin = list(expr = sin(pi / 4), numeric_value = 1 / sqrt(2)),
cos = list(expr = cos(pi / 4), numeric_value = 1 / sqrt(2)),
tan = list(expr = tan(pi / 4), numeric_value = 1)

)
)

# If names aren't provided, they are automatically generated.
with_parameters_test_that(

"trigonometric functions match identities",
{
testthat::expect_equal(expr, numeric_value)

},
cases(

list(expr = sin(pi / 4), numeric_value = 1 / sqrt(2)),
list(expr = cos(pi / 4), numeric_value = 1 / sqrt(2)),
list(expr = tan(pi / 4), numeric_value = 1)

)
)
# The first test case is named "expr=0.7071068, numeric_value="0.7071068"
# and so on.

# Or, pass a data frame of cases, perhaps using a helper function
make_cases <- function() {

tibble::tribble(
~.test_name, ~expr, ~numeric_value,
"sin", sin(pi / 4), 1 / sqrt(2),
"cos", cos(pi / 4), 1 / sqrt(2),
"tan", tan(pi / 4), 1

)
}

with_parameters_test_that(
"trigonometric functions match identities",
{

testthat::expect_equal(expr, numeric_value)
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},
.cases = make_cases()

)
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